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1. Model-based Reinforcement Learning (MBRL) is used to improve energy efficiency of HVAC systems. Although they
work in labs, they lack properties that allow us to verify their safety. This motivated us to rethink this method.
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2. We propose to use decision tree as the control agent, which has the desired properties. We designed a process to
learn the decision tree from the actions optimized by MBRL. We take advantage of the bias in data for efficient learning.
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3. We designed a Decision Path Verification algorithm that finds the input set for every leaf node. This enables us to
verify the input-output logical statements. This algorithm also allows us to interpret the tree by finding the in-out mapping.
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Algorithm 1: Decision path verification

1 for each leaf node T; do

2 P ={Ty,---,T;} < extract path from Tj to T;

3 C = RIX| > initialize state box boundaries
4 forTj € (P\T;) do

5 L C « C[ (input box of the rules from Tj to Tj41)

6 if CC ((st>2)V (st <2) R!*I-1) then

7 L check criteria compliance by Eq.4

4. We evaluated our method in EnergyPlus simulations using real weather profiles from two cities. Our method shows
higher energy efficiency (increase energy savings by 68.4%), fast convergence, and fast inference(1124x less overhead).
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Pittsburgh | Tucson
Total No. of nodes 1199 3291
No. of leaf nodes (unique path) 599 1646
Safe probability estimated by crit. #1 94.6% 95.1%
No. of nodes corrected by crit. #2 0 0
No. of nodes corrected by crit. #3 0 88
default [12] | MBRL [9] | CLUE [1] | DT (ours)
average (ms) 0.0 212.87 326.30 0.1888
std (ms) 0.0 266.89 102.30 0.4423
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code available at htips://github.com/ryeii/Veri HVAC
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https://github.com/ryeii/Veri_HVAC

